N90-27276
Agent Independent Task Planning?

William S. Davis
Boeing AI Center
PO Box 240002, MS JA-74
Huntsville, AL 35824-6402
net: bill@huntsai.boeing.com

ABSTRACT

Agent-Independent Planning is a technique that allows the construction of activity plans
without regard to the "agent" that will perform them. Once generated, a plan is then validated and
translated into instructions for a particular agent, whether a robot, crewmember, or software-based
control system. Because Space Station Freedom (SSF) is planned for orbital operations for
approximately thirty years, it will almost certainly experience numerous enhancements and
upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the
capability to construct plans for SSF operations, independent of specific robotic systems, by
combining techniques of object-oriented modeling, nonlinear planning and temporal logic. Since a
plan is validated using the physical and functional models of a particular agent, new robotic systems
can be developed and integrated with existing operations in a robust manner. This technique also
provides the capability to generate plans for crewmembers with varying skill levels, and later apply
these same plans to more sophisticated robotic manipulators made available by evolutions in
technology.

1. Introduction

Space Station Freedom is planned for orbital operations for approximately thirty years. Over
the long life of this complex structure, it will almost certainly experience numerous enhancements
and upgrades, including upgrades in robotic manipulators. Great potential for robotic automation
exists in the areas of housekeeping, laboratory science, maintenance, and safety, as well as various
EVA functions. Throughout this 30-year period the types of robotic manipulators available for
these areas, as well as the capabilities they provide, will continuously evolve with changes in
technology. On the contrary, basic procedures for intra- and extra-vehicular activity, once
established, will remain relatively static. As advances in technology produce more sophisticated
manipulators that are capable of performing more complicated tasks, robots may become
responsible for more detailed cperations. However, for these advancements in technology to be
beneficial to Space Station Freedom, any robotic upgrades should be compatible with existing
procedures.

Programming different robots for the same task is a redundant job that should be avoided.
Such programming can be very labor-intensive, not to mention the job of verifying that the "new"
robots are still compatible with the "old" tasks. Some tedious chores that crewmembers perform
today are the duties that may be carried out by the robots of tomorrow. Thus, the robotic plans that
will be developed for future on-board robots should be compatible with crew procedures that are
established in the interim. Persons who are currently responsible for composing such crew

+ © 1990 The Boeing Company, all rights reserved
PUBLISHED WITH PERPMISSION



procedures may eventually be tasked to compose these procedures for robots as well. In this
regard, prescribing activities for robots should be as similar as possible to prescribing activities for
crewmembers.

A technique known as "Agent-Independent Planning" has been developed for addressing the
above issues. Planning is determining a course of action to achieve some goal. Task planning is
determining a sequence of tasks (the course of action) to be performed by an agent to achieve some
desirable state (the goal) in the agent's world. "Agent-Independent Planning" is a method of
automated planning that allows the generation of task plans from a set of goals, without having to
be concerned with constraints imposed by the agent that will execute the plan. In the domain of
Space Station Freedom (SSF), these plans can be considered a sequence of tasks for intra-vehicular
and extra-vehicular operations activity. Plans, or operations procedures, are developed by
considering general constraints on the planning environment and task sequences. For execution of
these procedures, the plans are translated into the specific operations language of a particular agent.
This methodology allows plans and their environment to be modeled in a fashion that separates
different classes of constraints into independent sets.

A prototype of such a system has been developed at Boeing Aerospace and Electronics that
creates agent-independent plans for SSF maintenance and repair operations. The system translates
these plans into (a) code which is executed by a robot, (b) software commands which drive a
graphical robotic simulator, or (c) English sentences (output through a voice synthesizer) which
describe crew procedures. The actual planning mechanism is based on Chapman's TWEAK [3],
but the representation incorporates Allen's time logic [1] and hierarchical abstraction [8]. Hogge
integrates a temporal interval-based planner in the domain of Qualitative Physics [4], compiling plan
operators by matching descriptions of an agent with descriptions of the domain. The system
presented in this paper performs along similar lines to match an agent's capabilities with the needs
of a plan. This combination is validated to ensure the agent can perform the given plan.

This paper begins with an explanation of the plan representation in terms of the object-
oriented model of the plan environment, the temporal relationships among tasks in the plan, and
how these two representations are abstracted into a task library. Once this foundation is
established, a discussion ensues concerning the generation of agent-independent plans, and the
steps necessary to translate these plans for a specific agent.

2. Plan Representation

In order to have agent-independent planning, one must develop a representation for the plans
which is free from the agent who will perform the plan, but also which can later be transformed into
a representation that includes the agent. Such a representation must model the world in segments
which can be connected and disconnected to identify various aspects of the world. We accomplish
this by decomposing the planning environment into three distinct entities: Tasks, Agents, and
Objects. Thus, tasks are actions on objects, agents are the performers of actions, and objects are
the recipients of actions. The agent-independent plan is built combining tasks and objects, and then
the transformation is made to agent-dependency by incorporating knowledge about a specific agent.
Obviously, "action" is the common denominator of these three entities. In a robotic realm, these
actions represent physical motion. A primitive action is defined to be that which represents basic
physical motion, such as locomotion, rotation, limb movement (extension, retraction,
lateral/horizontal/diagonal movement), etc. Figure 1 lists the primitive actions currently employed
in the planning environment. Models of the planning environment (whether agents, objects, or
tasks) all relate to this set of primitives. These actions, or primitive tasks, provide the common



interface between agents and the planning environment. The agents’ and objects' physical and
functional constraints are represented in terms of preconditions and effects on these primitive tasks.
Object-oriented models of agent and object properties allow descriptions of agents and objects to be
combined through inheritance, as will be shown in the following section.

rotate clockwise move to  move left grasp push raise
rotate counter-clockwise camyto  moveright release pull lower

Figure 1. Primitive Actions Employed in Planner

2.1. Object-Oriented Environment

Agents and objects are composed of properties which are ordered hierarchically, with lower levels
inheriting the properties of higher levels, and communication between them is done in message-
passing fashion. This hierarchical ordering allows complex, real-world descriptions of items in the
environment. In terms of the Space Station Freedom maintenance domain, this means that complex
items such as thermal control systems can be described by the union of the properties of their
components (such as pumps, valves, pipes, etc.). Tasks, agents and objects are modeled with
primitive actions as a “connecting point”. In terms of this paper, task information declares which
objects are affected by action (and possibly in what order the action is to occur), information about
agents declares which actions they can perform and to what capacity, and object information
specifies the manner in which objects can be affected by actions.

subgoals: subgoals:
pcb . attached-p = no pcb . attached-p =yes
Slot? . occupied = no Slot? . parent-object = P-Obj?
Slot? . parent-object = P-Obj? P-Obj? . power-status = off
P-Obj? . power-status = off pcb .attached-to = Slot?
pcb . coordinates = Slot? . observation-pt pcb . depth = Distance?
pcb . depth = Distance? main-effects:

main-effects: pcb . attached-p = no
pcb . attached-to = Slot? side-effects:

side-effects: pcb . coordinates = Slot? . observation-pt
pcb . attached-p = yes pcb . attached-to = nil
pcb .coordinates = Slot? . coordinates Slot? . occupied = no

Figure 2. Functional Constraints for Printed Circuit Board

Agents and objects are represented as a mixture of characteristics describing their physical
properties and functional capabilities. Such physical properties include size, mass, relative
position, etc. while functional capabilities are constraints based on the primitive actions, as well as
physical properties of agents and objects. These functional constraints are based on typical
planning constraints, such as the preconditions/subgoals and effects found in Wilkins' SIPE [11].
This allows each agent or object to respond differently to the same primitive action according to the
manner in which it is modeled. Figure 2 shows an example of the object constraints for pushing or
pulling a printed circuit board. It is interesting to note how the constraints work to somewhat

3



specialize these generic actions into "remove" and "insert" actions. Pattern-matching is employed to
allow generic constraints to be tailored for specific objects. In the figure, variables are represented
by symbols appended with a question mark. These variables are instantiated in the planning
process, and then the constraints are used to determine truth satisfaction for including the action in
the plan. Functional constraints on an agent work in a similar fashion.

Also included in the definition of an agent are the specific instructions necessary for it to
perform a primitive action. It is this set of instructions that will be used to transform the plan
representation from agent-independent to agent-dependent. Agent characteristics are arranged in a
hierarchy such that properties of higher level are inherited by lower levels. For example, in figure 3
all the properties associated with limbs of motion are inherited by both arms and legs. In turn, arms
and legs add their own distinguishing properties and capabilities which are inherited by their lower
levels (which inherit the things from the limbs of motion characteristic as well). Thus to describe a
Puma-560 robot with one arm, incorporating vision, force/torque, and tactile sensors, one needs to
include in the robot's description the corresponding characteristics and then add the features
particular to the Puma-560 basic unit. Objects are represented in similar fashion. However,
whereas agents were classified on the grounds of their capabilities to effect action, objects are
classified according to how they are affected by action; the difference is one of activity versus
passivity. For instance, the object classifications, or characteristics, for a printed-circuit-board
(which is mounted on some rack) would include "replaceable object” and "fragile object".
"Replaceable object” would be derived from "removable object” (which has constraints that inhibit
certain actions on the object when "in-place”), while adding its own information concerning the
location of replacement objects, the location to discard used objects, etc.

BASIC-AGENT
Input Characteristics Output Characteristics
touch sound sight language limbs of motion
é%%ﬁ%rs fogg%g;gue vision speech text ams legs

/\

cardinality efFngor wheels treads

voice recognition

-\
one two three pad hand

PUMA 560

Puma 560 with one-arm, vision sensor, force-torque sensor,
and tactile sensor

Figure 3. Example Agent Hierarchy

2.2. Task Abstraction

As was stated earlier, tasks declare which objects are affected by action. Actions are
composed of sub-actions. For instance, replace pump may be broken into isolate pump, remove
pump, discard pump, get a new pump, and install pump. Primitive actions (see figure 1)
correspond to primitive tasks, and are used to create higher-level tasks. Higher-level tasks are



composed of previously defined higher-level and/or primitive tasks arranged in some fashion (see
section 2.3 for this arrangement). Thus, a (theoretically) infinitely large task library can be
developed using this means of abstraction. This capability provides for a dynamic planning
environment. That is, the plan that solves some goal today may well be composed of different tasks
when trying to solve the same goal tomorrow (assuming new tasks are being added to the library).
This allows the system to improve incrementally. By introducing plan variables, tasks then become
predications on objects as they are parameterized, such as remove(pump-27). The argument to a
task can also be an object characteristic (as defined above) in order to describe generic, or template,
tasks for use in describing more abstract tasks. This is analogous to the manner in which Wilkins
[11] uses constraints to construct partial descriptions of objects, as well as the specialization of
abstraction in Tenenberg's [8] plan graphs.

When instantiating plan variables to actual objects or object characteristics, the constraints
associated with that object are added to any existing constraints with the task. When abstracting a
group of tasks into a higher-level task, constraints are combined into a single set representing the
abstracted action. Plan variables which share the same symbol are made to be codesignating, and
any preconditions which are not satisfied within the abstracted group remain as a precondition for
the higher-level task; similarly, effects which reach outside the scope of the task group are
established as an overall effect for the higher-level task.

As initially stated, a plan is a set of tasks to be performed in some order. Because a higher-
level task fits this description, a plan is merely a higher-level task (throughout the remainder of this
paper, "task" and "higher-level task" will be used interchangeably). Each plan's sub-tasks are
ordered according to their connections, which represent sets of operators from temporal logic
specifying their sequence within the plan.

Relation rator Inverse Pictoral
elatio Operato Operator Example
t1  before t2 < > l 1 11 t2 |
t1  equal t2 >
t1  meets t2 m mi [ 1] 2]
o oi [ t1 ]
t1 overlaps t2 I 7

toostais 2 ° * S —

1 fnishes 12 ! " —]

Figure 4. Possible Temporal Relationships

—

2.3. Temporal Plan Network

The temporal operators that reflect time relationships between tasks are those discussed in
[1], and are summarized in figure 4. The temporal relationship between two tasks is expressed as a
disjoint set of temporal operators. Hence, (taskl [<, s, o] task2) denotes that task] either is before,
starts simultaneous to, or overlaps task2. Using such sets as links between tasks, we construct a
temporal network whose nodes are tasks and whose connections are temporal relationships between
them. The network is constructed regardless of the ability of the agent who will ultimately perform




the tasks. We need not worry about parallelism during task/plan description, nor about whether the
agent has one, two, or even ten arms. The only concern is what relationship each task has to other
tasks. Undefined relationships are inferred based on defined relationships. Figure 5 shows an
example; if we have the relationships (task! [s] task2) and (task2 [o] task3) defined, we infer the
relationship (task! [<,m,0] task3).

With the addition of temporal information, task abstraction becomes similar to the concept of
reference intervals in [1]. Each higher-level task, then, is a temporal network of tasks from lower
levels. For any such task, the temporal relations among its subtasks are validated by maintaining
their transitive closure, which prevents ill-definitions such as (task! < task2) , (task2 < task3) and
(task3 < taskl). This also may reduce some of the explicit ambiguity expressed in the task's
definition. Any remaining ambiguity is resolved during plan translation (as seen in the next
section). By means of task abstraction, expressed ambiguity, and plan variables (which can either
be instantiated to actual objects, or be constrained by object characteristics), non-trivial plans can be
constructed that are completely independent of the agent that will perform them.

[ task1 | AND [task2 |
—r
OR OR

Figure 5. Implication in the Temporal Logic

3. Plan Translation
3.1. Validation Under Agent Constraints

In order to execute some plan, a declaration must be made as to what agent should perform the
plan. Note, however, that this declaration may specify an agent that is incapable of such action.
Therefore, the combination of agent and plan must be validated. This is essentially the job of plan
translation. The luxuries that afford representation of the plan free from knowledge about an agent
must now be considered in light of the agent capabilities. That is, any ambiguous part of the
specified plan (plan variables, task abstraction, temporal ambiguity) must be resolved to a point
where specific instructions understandable by the agent can be generated. While the agent-
independent plan is represented in a hierarchy of temporal networks containing all possible
orderings of plan performance, plan validation attempts to eliminate those temporal possibilities
which are infeasible for a given agent, effectively producing an agent-dependent network. The
validation process ensures that at least one possible traversal through this agent-dependent network
is an acceptable plan, according to the agent's constraints, for accomplishing the desired goal. Itis
at this point that primitive tasks are mapped to specific agent instructions for execution. If at any
point the agent is found incapable of performing the plan, it is said to be "rejected" from
translation.

The first step of translation is to assign to the plan variables specific objects which the plan

will manipulate, making use of object characteristics (see section 2) to aid in constraining the
assignment. Once all the actual objects are determined, they can be used to check the physical

6



constraints of the specified agent. This is done by "matching" the physical properties of the agent
with those of the objects. For instance, one constraint checks the mass of an object against the
possible mass movable by the agent, while another constraint checks the size of each object to be
sure the agent possesses the proper tools and end effectors to manipulate the object. Such
constraints are used in validating that the agent is physically capable of manipulating the objects.

Once the agent's physical capability to perform the plan is established, the next matter of
validation is to ensure the agent is functionally capable of plan execution. Functional constraints of
an agent specify the temporal capability of an agent. Once a particular agent is designated for
translation, its functional constraints (in the form of planning preconditions and effects) are
integrated with the existing task and object constraints in the agent-independent plan. An agent is
found functionally incapable when the plan requires simultaneous action which the agent cannot
perform. A second reason for rejection is simply an ordering of the tasks that is incompatible with
the agent's ability at a given moment. Examples of this are directing the agent to "grasp the pump"
when no "hand" is free (i.e., is empty and available), or telling the agent to "release the filter" when
no filter is being held. The temporal check made by functional constraints must examine transitions
from one primitive task to another, and the timely ordering of the tasks can certainly be confirmed
by stepping through the plan while "simulating" the action in the world.

3.2. Deriving an Agent-Dependent Network

An agent-dependent network is produced essentially by eliminating any infeasible temporal
possibilities in the plan ordering. Presented here are two methods for obtaining this network. The
first results in a network which contains every possible ordering in which the agent can successfully
perform the primitive tasks to satisfy the goal, and excludes any problematic orderings. While this
method has exponential computational complexity, it performs satisfactorily for small networks.
Plans of significant abstraction, however, demand a more efficient translation process. The second
method uses a simple heuristic that reduces the algorithmic complexity; and although the resulting
network may produce an incomplete list of viable orderings, a straightforward assumption reducing
the impact of this deficiency makes this method a preferred alternative to the first.

The essence of the first method to derive an agent-dependent network lies in computing the
transitive closure over the temporal operators in the agent-independent network. Recall that such a
transitive closure is always maintained for the subtasks of any high-level task while it is being
defined. With this in mind, computing the transitive closure of @/l primitive tasks is a matter of
relating tasks across hierarchical boundaries. This can be done using the "during" relationships
(starts, during, finishes, and corresponding inverses) to relate sibling subtasks, as is done in the
reference hierarchies of [1]. Such transitivity applies through all levels of the plan hierarchy, and
can thus relate any primitive task to any other primitive task within a plan. A backtracking algorithm
as is mentioned in [1] can be used to minimize ambiguity among the temporal operators in the final
nclosed” network. Once established, an agent-dependent network can be derived by a breadth-first-
like traversal of the independent-network, updating virtual copies of the objects to maintain the
status of the world, and eliminating operators that cause the traversal to "back up” due to an
untimely ordering of events in consideration of the agent.

Intuitively, the above procedure operates in exponential time; a transitive closure algorithm
for temporal intervals is discussed in [10]. The observation can be made, however, that a vast
majority of these inferred links are irrelevant to the overall order of the plan. This raises the
question: which links are necessary in validation and which are not? The temporal links of
importance are those which impose simultaneous action on the agent. This means that validation

7



should be concerned not so much with the interconnections between all of the tasks, but rather with
those which reflect the transition from one task to another. This focus on transitional tasks at the
primitive level is the heart of the second method for obtaining an agent-dependent network.

This "endpoint method” makes use of a couple of existing properties of the agent-
independent network to save time. First, since temporal links among the individual task's subtasks
are consistent due to the maintenance of the transitive closure throughout task description, the entire
network is temporally consistent before validation/translation begins (i.e., consistency among
parents and consistency among children => consistency among siblings). Therefore, the transitive
closure is unnecessary for this purpose. Second, by the above assumption, transitory activity is of
main importance, so this method only considers relationships between primitive tasks which
possibly occur at endpoints of higher-level tasks. Starting with the level-1 tasks (one level above
the primitive/leaf level), a begin-set and end-set is computed for each set of subtasks. These
represent the tasks that can possibly start or finish their parent task, respectively. Given higher-
level tasks T1 and T2, and their respective begin-sets and end-sets, the "during" relationships are
used to infer relationships among members within these sets. However, unlike the previous
method which established relationships among all the primitive tasks, this method only uses the
endpoint relationships to modify higher-level relationships pre-existing in the agent-independent
plan. That is, the temporal relationship between two tasks T1 and T2 is pruned to eliminate any
conflicts in transitioning from a primitive subtask of T1 to a primitive subtask of T2. Once the
endpoint relationships are considered at this level, begin and end sets are computed for the next
higher level in similar fashion, considering further relationships at the primitive level, and pruning
those relationships from the network that are invalid for the agent. Pruning occurs either at the
"local" network (the endpoint level), eliminating the temporal operator(s) which caused a conflicting
task to be considered as an endpoint, or at the most abstract level that is appropriate, eliminating the
temporal operator(s) that caused the endpoint sets to be in conflict. Finally, this method differs
from the previous one, which used breadth-first traversal to find all viable paths, by using depth-
first traversal to find a viable path. The viable path found becomes the sequence of the agent-
dependent plan.

4. Plan Generation

Although the primary intent of this paper is to present "agent-independency," a brief
description of the actual planner is provided to show how it uses the various planning and temporal
constraints. The planner is nonlinear; that is, it produces a plan by deriving and further constraining
sets of partial orders. It incorporates a constraint posting theme, using the objects' and agents’'
functional constraints as planning constraints. Certainly more thorough discussions of planning
constraints and techniques exist elsewhere [3,11], but the terms are briefly defined here for clarity.

Each task contains an associated set of planning constraints (preconditions, subgoals, main
effects, and side effects), which result from combining any associated agent or object constraints
with other abstracted constraints. Subgoals are those conditions which must be satisfied before the
execution of a task. Preconditions are those conditions which must be satisfied before the inclusion
of that task into the plan. In essence, they are subgoals that are immediately satisfiable from tasks
already existing in the plan. Main effects are conditions resulting from a task, and serve as a reason
for selecting a task to achieve a particular goal. Side effects are conditions which are caused by a
task, but which are not significant enough to warrant its inclusion in the plan. When adding tasks
to a plan, a clobberer is a task which potentially defeats a precondition for another task, thus
causing a break in plan causality. Promotion is the technique of constraining the clobberer to occur
after the time when the precondition must be met. Separation is the technique of constraining the

8



clobberer not to codesignate with the precondition. That is, any plan variables that could be
instantiated such that the clobberer's effects would defeat the precondition are prevented from doing
so. Using these terms, figure 6 presents an outline of the planning approach.

Using the simple concepts of promotion and separation as defined above will force the
planner to build plans that are sequential at their most abstract level. Incorporating temporal
properties into the planner allows the construction of plans that are not committed to any particular
order. Work along the lines of [2,9] associates temporal intervals with each task and
condition/effect. Goals are achieved by "collapsing” intervals (asserting them be "equal") of
conditions and effects. Hence, when a task is inserted into the plan its main effect is asserted to be
temporally equal with the subgoal it is supposed to satisfy. This new relationship is propagated
throughout the (top level) tasks in the plan. Upon detecting a clobberer, promotion and separation
can still be employed, but rather than imposing a sequential constraint the conflicting tasks are
simply constrained not to share the same interval (i.e., not be overlapping, during, starting, etc.).
Such a combination between traditional nonlinear planmng and temporal planning allows the
generation of task plans that make no presupposition concerning which activities can be parallel and
which must be sequential.

General procedure to satisfy a goal:
1. If a main or side effect which satisfies the goal already exists in the plan, then constrain
the effect's task to precede the goal. ( and procede to next goal)
2. Otherwise, select a task whose main effect matches the goal and whose
preconditions can be immediately satisfied. (fail if no such task exists)
3. Inserttask Tinto the plan, binding any plan variables necessary, by constraining 7to
precede the goal and constraining tasks satisfying T's preconditions to precede T.
if any clobberers exist, try promoting them past the clobberee. (otherwise step 7)
If promotion falils, try separation.
If separation fails, then backtrack to step 2 and select a different task to satisfy the goal.
Upon successful addition of Tinto plan, place T's subgoals onto goal queue and
continue until goal queue is empty.

No O A

Figure 6. Outline of Planning Approach

5. Summary and Future Directions

A system has been introduced for describing and generating plans in a representation
independent of an agent, which can subsequently be translated into agent-dependent instructions
suitable for execution. Agents and objects are represented in an object-oriented fashion, allowing
their description of physical and functional capabilities to assist in constraining plan
description/generation, and to be "matched" for plan validation purposes in translation. Tasks can
either be primitive actions based on movement, or abstracted to higher-level tasks (synonymous
with plans) consisting of subtasks arranged in "temporal networks" (which allow temporal
ambiguity in describing task orderings). Tasks and objects are combined to form an agent-
independent plan. Plan translation transforms this into an agent-dependent plan by validating the
combination of the plan with the properties and constraints of a specific agent, resulting in a set of
instructions executable by the agent. Plans are constructed automatically using nonlinear planning
techniques which operate on functional constraints of agents and objects. Integrating temporal



planning with these techniques provides a more flexible planner which holds no bias in sequencing
activity.

This system is implemented for the domain of maintenance and repair of Space Station
Freedom. It currently generates VAL II instructions to a PUMA-560 with integrated force/torque
and vision sensors, English instructions for a crewmember, and software procedure calls to a
robotic simulator. Several extensions to this system are planned. Planning in complex domains
often requires that plans be initially generated from incomplete data, or data that will evolve over
time. Current methods allow the use of temporal relationships in a deductive fashion, reducing the
possibilities of task ordering as more information is known about the plan. However, retracting
assertions which have reduced the temporal network is computationally very expensive. Therefore,
future work will concentrate on adding nonmonotonicity to the temporal logic to facilitate reasoning
with changing data. This will provide a foundation to examine replanning strategies for the
temporal planner. For better integration with crewmembers, techniques for explaining planner
rationale will be explored. In addition, crew skill models will be developed to allow better
presentation of plans and their explanations to crewmembers. These enhancements to agent
modeling will also be extended to include a more sophisticated robotic agent with a dexterous three-
fingered hand and advanced sensing capabilities. All of these activities will support the
development of technology which allows manned spacecraft workload to be modeled and shared
between crewmembers and robots, and activity plans to be automatically generated regardless of the
agents who will accomplish them.

References
[1] Allen, J.F., Maintaining knowledge about temporal intervals, Communications of the ACM,
vol. 26, 1983, pp. 832-843.
[2] Allen, J.F. and Koomen, J.A., Planning using a temporal world model, Proceedings IJCAI-
83, 1983, pp. 741-747.
[3] Chapman, D., Planning for Conjunctive Goals, Artificial Intelligence, vol. 32, 1987, pp. 333-
377

[4] Hogge, J.C., Compiling plan operators from domains expressed in Qualitative Process Theory,
Proceedings AAAI-87, 1987, pp. 229-233.

[5] Ladkin, P., Time representation: A Taxonomy of Interval Relations, Proceedings AAAI-86,
1986, pp. 360-366.

[6] Leban, B., McDonald, D., and Forster, D., A Representation for Collections of Temporal
Intervals, Proceedings AAAI-86, 1986, pp. 367-371.

[7] Pelavin, R.N. and Allen J.F., A model for concurrent actions having temporal extent,
Proceedings AAAI-87, 1987, pp. 246-250.

[8] Tenenberg, J., Planning with abstraction, Proceedings AAAI-86, 1986, pp. 76-80.

[9] Tsang, E.P.K., TLP - A Temporal Planner, Advances in Artificial Intelligence, eds. Hallam and
Mellish, 1987, pp. 63-78.

[10] Vilian, M. and Kautz, H., Constraint Propagation Algorithms for Temporal Reasoning,

Proceedings AAAI-86, 1986, pp. 377-382.
[11] Wilkins, D., Practical Planning, Morgan Kaufmann Publishers, 1988.

10



